
631 

Acta Cryst. (1976). A32, 631 

The Influence of the Primary Beam Shape on the Extinction Correction 

BY J. P. URBAN* 

University of the Witwatersrand, Physics Department, Johannesburg, South Africa 

(Received 1 September 1975; accepted 3 December 1975) 

On the basis of the solutions of Darwin's energy-transfer equations the influence of the line profile of 
the primary beam on the extinction of X-ray and neutron intensities has been studied. Numerical 
calculations for the plane parallel plate, a wedge and a spherical sample were performed. The plane 
parallel plate is not affected by the primary beam. For the wedge only small influences were found 
(up to 12%). Spherically shaped crystals were investigated with a constant, a sawtooth-shaped and a 
0-function-shaped primary beam. The influence of the primary beam increases with the variable aro. 
General formulae for arbitrary shapes of crystals and primary beams are given which may be used for 
specific experiments. 

Introduction 

In order to correct X-ray and neutron intensities for 
extinction effects a theory based on the solutions of 
Darwin's energy-transfer equations was accomplished 
by Zachariasen (1967) and generalized by Becker & 
Coppens (1974, 1975). However, in both treatments the 
line shape of the primary beam was not taken into 
consideration. In their solutions of Darwin's equations 
the primary intensity appears only as a constant factor. 
As this is only true for crystals which are very small 
compared to the width of the primary beam and for 
which the intensity is constant over this range the 
present treatment investigates how far the line profile 
of the primary beam influences the results obtained 
with the theories by Zachariasen (1967) and Becker 
& Coppens (1974, 1975). 

Solutions of the transfer equations 

In order to solve Darwin's transfer equations, the 
following coordinate system l,[ is introduced (Fig. 1): 
Axis Z points in the direction of the primary beam 
while axis l points in the direction of the scattered 
intensity, l and l make an angle of 20. The origin of the 
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Fig. 1. Definition of the coordinate system l,~ 

system is chosen in such a way that the maximum of the 
primary beam meets the crystal in the origin. The 
intensity field in the [ direction is called I(l, [) and the 
one in the l direction is called R(/,I). In order to 
simplify the calculations the absorption in the crystal 
was neglected. An intloduction of absorption can be 
easily done. 

In this approximation the transfer equations become: 

OR 
- a ( R - I )  (la) 

Ol 

OI 
- - a ( l -  R ) .  (1 b)  

ol 

cr is the diffracting cross section per unit volume and 
unit intensity defined by Zachariasen (1967) and 
Becker & Coppens (1974). 

R a n d / c a n  be written as a sum of multiple scattering 
terms: 

R =  ~ R n  and I= ~ I n .  
n=l n=O 

For the R field the numbers n have the following 
meaning: n=l :  onefold scattering, n=2: threefold 
scattering, etc. For the I field the following definitions 
were used: n = 0 :  zerofold scattering, n = l :  twofold 
scattering, etc. Equations (la) and (lb) can be solved 
by using Rn and 1, rather than the functions R and I. 
The following results weie obtained: 

aIl,=z~(i) 
R.+,q,l)= ~(z~(l) 

a" o l =h(l) 

0 

In( l ' ,h  exp [ - a ( l - l ' ) ] d l '  

for l ° ( i )  <_ l <_ l~(l) 

I~( l ' , l )  exp { - a [ l ° ( h - l ' ] } d l  ' 

for l°(l) < l 

otherwise; 

(2a) 
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i I I,= lo,(I) Rn(I,I' ) exp [-a( l -  l')dl' 
for l°(l) <_ l<_ i°ft) 

I,(l,l)= ~i°(D 
a}l,=l?(l ) R,(l,l') exp {-a[i°(l)-l ']}dl ' 

for l°ft) < l 
0 otherwise; 

(26) 

I°(l'I)= ! 

P(I) for l<i°,tl) 
P(I) exp {-a[l-l°ll)]} 

for l°,(l) < I< l°(l) 
P(I) exp {-a[i°(t)-i7(1)]} 

for l> l°(l). (2c) 

The quantities l°(l), l°~l), l°(l) and l°(l) are the coor- 
dinates of points on the surface of the sample as 
illustrated in Fig. 1. P(l) is the intensity profile of the 
primary beam before it enters the crystal. A generaliza- 
tion for crystals with absorption is obvious and need 
not be considered here. 

Obviously, equation (2) can be solved simultaneously 
once the shape of the crystal, i.e. the coordinates 
i °, l °, l ° and l °, is known. It can be seen that the 
function R must depend on the shape of the crystal 
and on the shape of the primary beam. In order to 
investigate their influence on the extinction coefficient, 
the function ~0(a) which was introduced by Zachariasen 
(1967) is investigated with regard to the various shapes 
of crystals and the primary beam. 

In order to account for the dimension of the primary 
beam perpendicular to l, l, a new axis z was introduced 
which is perpendicular to l, l. 

Through the scattering power of the diffracted beam 
for multiple scattering 

Q(el) = I I R[l°(i)'[]dldz sin 20 (3a) 

and for kinematical scattering 

l°(D e(t)dtJdz sin 20 
Qk(el) = a l  I Ol=lO(,) 

=crl I eq) [Z (Z)-I2(O]dldz sin 20, (3b) 

the function ~o(a) is defined as: 

~o(a) = Q(el)/ Qk(el) . (3c) 

The integrations with respect to /, l and z must be 
performed over the maximal dimension of the crystal. 
Although equations (2a-c) are general, it is not 
possible to give general solutions for arbitrary shapes 
of crystals and primary beams. The purpose of the 
present representation is to show how far the primary 
beam can affect the results obtained with a constant 

primary beam. Therefore only two examples will be 
discussed in the following: wedge-shaped crystals 
(including plane parallel plate), and spherically shaped 
crystals. 

Wedge-shaped crystals (symmetrical Bragg case) 
For the symmetrical Bragg case the following condi- 
tion between the angles 0 and ct must hold: 0 > u  
(Fig. 2). The surface functions i ° and l ° become: 

ioq) = z zo(i) = A i  + B 

l°(l)=A'l+ B l°(l)=l (4) 
with 

A ' = I / A  B'=Z o B = - A t o  

A =(sin 0 + t a n  ~ cos 0)/(sin 0 - t a n  a cos 0) 
l<_A <c,o . 

For A = 1 the case of the plane parallel plate of 
thickness lo is obtained while for A = oo the scattered 
beam is parallel to the far side of the wedge, i.e. 
0=co Up to second-order effects, i.e. threefold scat- 
tering, equations (2) have been solved: 

With 

Q"= I I R"[/°(l)'i]dl sin 20dz 

and 

[4 + z - - ~ - -  +-a B ~ -  + -w]  

8 exp -20" ~ A2 l - B ~ )  d/sin2Odz 

(5b) 

T 

l0 

Fig. 2. Geometry of the wedge-shaped crystal. 
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and 

1 Qk= ~ ~ P(I) [ ( A ' -  1)l+ B']dl sin 2adz. (5c) -~ 

With 9 , =  QJQ~ the following expressions for 9 are 
obtained: 1 6 

eo Ill <- c c=lo/(1-  l/A) 
1. P(l ,z)= 0 otherwise 14 

1 1 
9~-  2alo 2alo exp ( -2alo)  12 

x sinh ( 2a ~ A -  c) / 2 a  ~ f l -  c 10 

1 A2-1  
9 z -  8alo 41o A c exp ( -2a10)  8 

x c o s h  2o" c 2 o ' ~ c  6 

A + I  A + I  A2-1~  4 
+ 8o'/0 4 + 8alo ] 

A z 
8o.l o exp [-2alo(A + 1)/A] 

x sinh 2 o ' ~ c  2 o ' ~ c .  

2. P(l ,z)= Poa(l)d(z) 

1 - exp ( -  2o-lo) 
9, = 2alo 

1 ( A 2 - 1  
92 " ~ "  8al----o + ' 8al o 

A 2 

8al o 

A+I) 
4 exp ( -  2alo) 

- - - e x p  [ -2al0(A + 1)/A]. 

In order to compare the different cases, the limits 
A =  1 (plane parallel plate) and A = o o  were inves- 
tigated. 

A = 1 : plane parallel plate 
The influence of the primary beam cancels, i.e. for 

all different shapes the known result of Zachariasen 
(1967) is obtained: 

1 - exp ( -  2alo) 
91 = 2alo 

1 1 
9 2 -  8o'/0 ½ exp ( - 2 t r i o ) -  ~ exp (-4a10) 

1 
9-- l+alo 

A = oo. 

# 
,ff / 

v 

y 

/ 
J 
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Fig. 3. 1/~ plotted as a function of trio for a wedge-shaped 
crystal. • A=o% primary beam constant. × A=o% 
primary beam &function. • A=I,  plane parallel plate, 
arbitrary primary beam. 

The shape of the primary beam becomes important: 

eo I/l_~lo 
(a) P =  0 otherwise 

1 1 1 
91 = 2alo 8(a/o) ~ + ~ exp ( -4a t0)  

1 3 
9 z -  8at0 32(alo) z 

+ [~-al/o +¼ + 32(31o)2]exp(-4alo) • 

(b) P=Poa(/)a(z) 
1 1 

91 = 2trl0 2O'/o exp ( -  2alo) 

8o'/01 ( - 4 -  alo Omo 1 ) 9~ = ¼ + + exp ( -  2O"1o). 

In Fig. 3 the function 1/9 is plotted as a function of 
10g. The deviations are not serious. They are of the 
order of 12% for l o a = l  and 2% for 10a--10 in the 
case A = co. The plane parallel plate is unaffected by 
the primary beam and is therefore the most simple case 
with respect to extinction. 
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Spherical crystals 

The calculations for spherical crystals become rather 
involved. Therefore only two limiting cases have been 
investigated, i.e. 20=0 and 20=zc. These two cases 
can be solved analytically and were therefore used to 
demonstrate the influence of the primary beam. For 
the two cases the coordinate system (l,/) introduced 
above is ill-defined. Therefore, a Cartesian system has 
been introduced, i.e. (x,y,z). 

x points in the direction of the primary beam and 
passes through the centre of the sphere. The origin of 
the system lies on the surface of the sphere. The 
following expressions for the scattered intensities are 
obtained: 

I 2a(r~) - yZ _ zZ)l/Z 
P(y,z)-f+2a(r2_y2_z2)~/z__o for 20=n  

R =  
P(y,z) exp [ -  2a(r~-y z -  z2) 1/2] 

× sinh [2a(rZo-y2- z2)~/z] for 20 = 0; 

r0 is the radius of the sphere. 
The shape of the primary beam has been assumed 

to be a sawtooth in the y direction and to be constant 
in the z direction in the first case, and a O-function in 
the y and z directions in the second case: 

(,o 1)  
(1) P(y,z)=P1 ~ + l -  --ro lyl =Ps 

(2) P(y,z)= PoO(y)O(z)= P~ . 

The case (1) contains the case of a constant beam if 
PI=0.  The following results for the functions ~0 were 
obtained: 

20=0  

(p0= 1 .......... {3(Po/el + 1) [8(ar0) z 
64(aro)3(Po/e~ +[) 

+ 4aro exp ( -  4ar0)-  1 + exp (-4ar0)] 

32 (err0)2 + 96(crro)ZIiz(1--z2)l/2 - - Y  -U 

xexp(-4aroz)dz} for P = P s  

sinh (2at0) 

and 

~0 ° = exp ( -  2ar0) 2aro for P = Po; 

20=re 

~o,~ = 1 {3[Po/P1 + 1] [(o-r0) 2 
4(aro)3(Po/P1 × ~) 

24 (ar0)3 - aro + ½ In (1 + 2ar0)]- 

f:Vl:} x dz for P = P~ 
o 1 +2oroz 

and 
1 

~: - for P =  P~. 
1 + 2aro 

The results are plotted in Fig. 4. 

Conclusion 

It has been shown that the solutions of Darwin's 
energy-transfer equations must contain the shape 
function of the primary beam. Consequently, in an 
extinction theory which takes these solutions as basis 
this effect must be taken into account. The theory of 
Zachariasen (1967) and of Becker & Coppens (1974) 
considers only a special case, i.e. a constant primary 
beam over the whole entrance surface of the crystal, 
which may be sufficient for very small samples, i.e. 
very small compared to the width of the primary 
beam and for crystals shaped as plane parallel plates. 
The presentation given above accounts for this addi- 
tional effect in a general form. The solutions of the 
transfer equations given as integral equations contain 
the shape of the primary beam. Obviously, the special 
case of Zachariasen's and Becker & Coppens's treat- 
ment is included in the present representation. In the 
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Fig. 4. Spherical crystal (l#p plotted against o'r0). 1: 20=0, 

P =  Pc. 2: 2 0 =  O, P =  P~, Po/P1 = O. 3: 20=0, P =  P~, Po/PI = 
c~. 4: 20= rt, P =  Pc, 5: 20= rr, P=P~,  Po/P1 =0. 6: 2 0 =  re, 
P = P~, Po/PI = oo. 
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case of a wedge-shaped crystal the new correction is 
very small [up to 12% for the function ~0(a)] and is 
zero for the plane parallel plate. For spherical crystals 
the influence of the primary beam is more serious. If 
o'r0 becomes large compared to 1 the deviation from a 
crystal bathed in a constant beam increases. This case 
becomes important for small scattering angles and 
large crystals, i.e. when extinction effects become 
large. Under these circumstances, corrections for 
primary beam shapes might not be negligible. 

In any case, before applying the uncorrected theory 
it is recommended that each specific experiment should 
be carefully in vestigated in order to establish whether 

a treatment for the primary beam is necessary. With 
the use of high-speed computers this can be done for 
arbitrarily shaped crystals and primary beams by 
using equations (2a-c). 
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This article re-analyses the extinction problem in diffraction. It has been proved that Hamilton's 
equations are valid only for mosaic crystals, type I. The solution of these equations has been found for 
any shape of crystal using general initial conditions. 

Introduction 

The extinction problem received considerable attention 
once it was found necessary to make corrections for 
extinction, when determining crystallographic struc- 
tures. Later, the necessity of using monochromatic 
crystals more efficiently led to the same problem. 

For an ideal crystal, the extinction factor is deter- 
mined from the dynamic theory, but in practice its 
formula has been computed only for an infinite, plane 
parallel crystal plate (see Zachariasen, 1945). For a 
real crystal, however, Darwin's equations formulated 
for an infinite plane parallel plate, were generalized by 
Hamilton (1957) for a crystal of arbitrary shape and 
these were solved numerically by him. Werner & Ar- 
rott (1965) arranged Hamilton's equations into an inte- 
gral form and solved them by successive approxima- 
tions. This, in practice, is a tedious method which re- 
quires much calculation. But, as will be indicated 
below, there are regions in the crystal where it is pos- 
sible to obtain a direct solution of Hamilton's equa- 
tions by solving two initial-value problems. It should 
be mentioned that Werner, Arrott, King & Kendrick 
(1966) have proposed another method for solving 
Hamilton's equations for both finite and infinite plane 
parallel crystal plates. This method involves the expan- 
sion of the incident and diffracted intensities, in terms 
of modified Bessel functions. This method is not gen- 
eral because, when another crystal shape is considered, 

another set of functions must be found from which the 
expansion may be performed. 

Zachariasen (1967) has suggested a general extinction 
theory. Several authors have carried out a number of 
experimental tests and no experimental agreement has 
been found for Zachariasen's theory for strong extinc- 
tion. It has been concluded that some approximations 
used by Zachariasen are not valid (see Cooper & 
Rouse, 1970). Werner (1969) also found fault with this 
theory. One criticism is that Hamilton's equations do 
not hold good for a perfect crystal. Zachariasen wrote 
Hamilton's.equations using variables tl and tz to rep- 
resent the depths below the surface measured along the 
two propagation directions. But for these variables the 
form of the equations is not always preserved. A new 
term appears, which contains the derivative of the 
function describing the boundary. This term disappears 
only if the crystal takes the form of a parallelepiped 
whose edges are oriented in the two propagation direc- 
tions. Therefore, Zachariasen's theory is valid in this 
case only. 

Consequently, it is necessary to reconsider the ex- 
tinction problem. §1 of this article is devoted to a 
general discussion of the transport equations for 
Bragg diffraction. It will be demonstrated that the 
Hamilton equations are valid for type I mosaic crystals 
only. In the §2, these equations are solved for a crystal 
of any shape. An application of the formulae derived 
in §2 is given in §3. 


